Targeted-capture massively-parallel sequencing enables robust detection of clinically informative mutations from formalin-fixed tumours
نویسندگان
چکیده
Massively parallel sequencing offers the ability to interrogate a tumour biopsy for multiple mutational changes. For clinical samples, methodologies must enable maximal extraction of available sequence information from formalin-fixed and paraffin-embedded (FFPE) material. We assessed the use of targeted capture for mutation detection in FFPE DNA. The capture probes targeted the coding region of all known kinase genes and selected oncogenes and tumour suppressor genes. Seven melanoma cell lines and matching FFPE xenograft DNAs were sequenced. An informatics pipeline was developed to identify variants and contaminating mouse reads. Concordance of 100% was observed between unfixed and formalin-fixed for reported COSMIC variants including BRAF V600E. mutations in genes not conventionally screened including ERBB4, ATM, STK11 and CDKN2A were readily detected. All regions were adequately covered with independent reads regardless of GC content. This study indicates that hybridisation capture is a robust approach for massively parallel sequencing of FFPE samples.
منابع مشابه
Targeted High Depth Next Generation Sequencing of Tumor Specimens
We have developed a targeted next generation sequencing (NGS) methodology for sensitive DNA variant detection that is highly optimized for clinical specimens and enables the accurate detection of clinically actionable mutations from low input DNA quantities. This strategy provides reliable, uniform, and high depth (>1000x) sequencing across gene regions representing >500 known cancerassociated ...
متن کاملTargeted High Depth Next Generation Sequencing of Tumor Specimens
We have developed a targeted next generation sequencing (NGS) methodology for sensitive DNA variant detection that is highly optimized for clinical specimens and enables the accurate detection of clinically actionable mutations from low input DNA quantities. This strategy provides reliable, uniform, and high depth (>1000x) sequencing across gene regions representing >500 known cancerassociated ...
متن کاملHigh-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing.
UNLABELLED Knowledge of "actionable" somatic genomic alterations present in each tumor (e.g., point mutations, small insertions/deletions, and copy-number alterations that direct therapeutic options) should facilitate individualized approaches to cancer treatment. However, clinical implementation of systematic genomic profiling has rarely been achieved beyond limited numbers of oncogene point m...
متن کاملSingle molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation.
The detection and quantification of genetic heterogeneity in populations of cells is fundamentally important to diverse fields, ranging from microbial evolution to human cancer genetics. However, despite the cost and throughput advances associated with massively parallel sequencing, it remains challenging to reliably detect mutations that are present at a low relative abundance in a given DNA s...
متن کاملTowards a Next-Generation Sequencing Diagnostic Service for Tumour Genotyping: A Comparison of Panels and Platforms
Detection of clinically actionable mutations in diagnostic tumour specimens aids in the selection of targeted therapeutics. With an ever increasing number of clinically significant mutations identified, tumour genetic diagnostics is moving from single to multigene analysis. As it is still not feasible for routine diagnostic laboratories to perform sequencing of the entire cancer genome, our app...
متن کامل